Kaldor and Piketty's Facts: The Rise of Monopoly Power in the United States

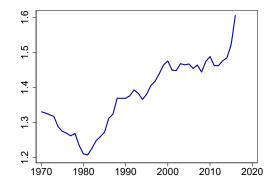
> Eggertsson, Robbins, Wold Discussion by Maarten De Ridder

> > 15 October 2020

Sinancial wealth (% of income) has increased, capital stock has stagnated

-

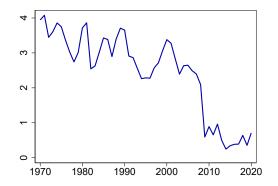
・ロト ・回ト ・ヨト ・


- Financial wealth (% of income) has increased, capital stock has stagnated
- 2 Tobin's Q has increased, now permanently above 1

- Sinancial wealth (% of income) has increased, capital stock has stagnated
- ² Tobin's Q has increased, now permanently above 1
- **③** Real interest rate has decline, average return to capital is constant

- Sinancial wealth (% of income) has increased, capital stock has stagnated
- 2 Tobin's Q has increased, now permanently above 1
- **③** Real interest rate has decline, average return to capital is constant
- So the capital and the labor share in income have decreased

- Sinancial wealth (% of income) has increased, capital stock has stagnated
- O Tobin's Q has increased, now permanently above 1
- **③** Real interest rate has decline, average return to capital is constant
- 9 Both the capital and the labor share in income have decreased
- Investment-to-output has decreased


Explanation: market power

Markups for U.S. listed firms (Compustat data, estimates from De Loecker, Eeckhout, Unger 2020)

・ロト ・日下・ ・ ヨト・

Explanation: interest rates

Natural real interest rate for the U.S. (estimates from Holston, Laubach, Williams 2017)

This Paper

• Build a DSGE model, minimal changes from the standard Neoclassical model

- Dixit-Stiglitz monopolistic competition with exogenous entry and exit
- Profits are traded on financial markets (asset pricing)
- Epstein Zin preferences for realistic equity premium i.c.w. long-term risk

This Paper

• Build a DSGE model, minimal changes from the standard Neoclassical model

- Dixit-Stiglitz monopolistic competition with exogenous entry and exit
- Profits are traded on financial markets (asset pricing)
- Epstein Zin preferences for realistic equity premium i.c.w. long-term risk
- Calibrate the model to match initial moments for U.S. economy (1970)

This Paper

• Build a DSGE model, minimal changes from the standard Neoclassical model

- Dixit-Stiglitz monopolistic competition with exogenous entry and exit
- Profits are traded on financial markets (asset pricing)
- Epstein Zin preferences for realistic equity premium i.c.w. long-term risk
- Calibrate the model to match initial moments for U.S. economy (1970)
- Assess effect of a jump in markups and interest rates on model's predictions
 - Compare ergodic mean of variables before and after shock

Increase in markups:

メロト スピト メヨト メヨト

Increase in markups:

 $\bullet\,$ Increase in pure profits $\Rightarrow\,$ increase in stock prices $\Rightarrow\,$ financial wealth up $\checkmark\,$

Increase in markups:

- $\bullet\,$ Increase in pure profits $\Rightarrow\,$ increase in stock prices $\Rightarrow\,$ financial wealth up $\checkmark\,$
- Increase in pure profits \Rightarrow capital and labor income in (% of GDP) declines \checkmark

Increase in markups:

- $\bullet\,$ Increase in pure profits $\Rightarrow\,$ increase in stock prices $\Rightarrow\,$ financial wealth up $\checkmark\,$
- Increase in pure profits \Rightarrow capital and labor income in (% of GDP) declines \checkmark
- Increase in pure profits \Rightarrow Wealth > Capital \Rightarrow $Q_t = \frac{W-t}{K_t}$ above 1 \checkmark

Increase in markups:

- $\bullet\,$ Increase in pure profits $\Rightarrow\,$ increase in stock prices $\Rightarrow\,$ financial wealth up $\checkmark\,$
- Increase in pure profits \Rightarrow capital and labor income in (% of GDP) declines \checkmark
- Increase in pure profits \Rightarrow Wealth > Capital \Rightarrow $Q_t = \frac{W-t}{K_t}$ above 1 \checkmark
- Monopolist chooses lower l \checkmark such that marginal product of capital > r \checkmark

Increase in markups:

- $\bullet\,$ Increase in pure profits $\Rightarrow\,$ increase in stock prices $\Rightarrow\,$ financial wealth up $\checkmark\,$
- Increase in pure profits \Rightarrow capital and labor income in (% of GDP) declines \checkmark
- Increase in pure profits \Rightarrow Wealth > Capital \Rightarrow $Q_t = \frac{W-t}{K_t}$ above 1 \checkmark
- Monopolist chooses lower I \checkmark such that marginal product of capital $> r \checkmark$

Decline in interest rates:

Increase in markups:

- $\bullet\,$ Increase in pure profits $\Rightarrow\,$ increase in stock prices $\Rightarrow\,$ financial wealth up $\checkmark\,$
- Increase in pure profits \Rightarrow capital and labor income in (% of GDP) declines \checkmark
- Increase in pure profits \Rightarrow Wealth > Capital \Rightarrow $Q_t = \frac{W-t}{K_t}$ above 1 \checkmark
- Monopolist chooses lower I \checkmark such that marginal product of capital $> r \checkmark$

Decline in interest rates:

• MPK has been constant \Rightarrow rise of μ raises MPK; fall of r offsets \checkmark

Increase in markups:

- $\bullet\,$ Increase in pure profits $\Rightarrow\,$ increase in stock prices $\Rightarrow\,$ financial wealth up $\checkmark\,$
- Increase in pure profits \Rightarrow capital and labor income in (% of GDP) declines \checkmark
- Increase in pure profits \Rightarrow Wealth > Capital \Rightarrow $Q_t = \frac{W-t}{K_t}$ above 1 \checkmark
- Monopolist chooses lower I \checkmark such that marginal product of capital $> r \checkmark$

Decline in interest rates:

- MPK has been constant \Rightarrow rise of μ raises MPK; fall of r offsets \checkmark
- ullet Contributes **quantitatively** to increase in financial wealth, Tobin's Q \checkmark

Results

Moment	Δ Model	Δ Data
Wealth-to-output	0.77	1.10
Capital-to-output	0.24	0.31
Tobin's Q	0.20	0.26
Real interest rate (pp)	-2.16	-2.00
Average return to capital	-0.19	-0.14
Profit share (pp)	7.45	7.66
Labor share (pp)	-5.45	-5.51
Capital share (pp)	-2.00	-2.15
Investment-to-output (pp)	-0.57	-4.09
Equity premium (pp)	2.24	0 to 2

Change in ergodic mean of moments relating the 5 economic puzzles versus change in data

Eggertsson et al. (2020) Table 6. Targets: interest rates, markups (profit share)

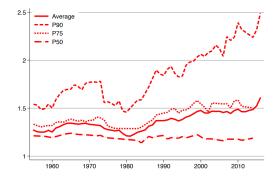
< □ > < □ > < □ > < □ > < □ >

- Inequality versus representative agent
- Note: model versus data predictions on concentration
- Markups: diagnosis or symptom?

・ロト ・回 ト ・ ヨト ・

Inequality versus representative agent

The effect of markups is analyzed in a representative agent framework


・ロト ・回 ト ・ ヨト ・

The effect of markups is analyzed in a representative agent framework

Important feature of markup rise: unequal across firms

- Markup dispersion has increased: rise is concentrated in top deciles
- Reallocation: markups increased because high-markup firms became larger
- Raises questions about welfare effects and mechanisms

Markup dispersion

Markups for U.S. listed firms (Compustat data, estimates from De Loecker, Eeckhout, Unger 2020)

・ロト ・回 ト ・ ヨト ・

Markup dispersion

Dispersion matters for quantification:

イロン イロン イヨン イヨン

Dispersion matters for quantification:

- Heterogeneous markups: affects allocative efficiency
- Loss from misallocation reduces $Y \Rightarrow$ affects profitability, asset prices, etc.

Dispersion matters for quantification:

- Heterogeneous markups: affects allocative efficiency
- Loss from misallocation reduces $Y \Rightarrow$ affects profitability, asset prices, etc.
- \ldots but it also tells something about $\ensuremath{\textit{mechanisms}}$

Key mechanism:

• In the model: $\frac{\partial y_i}{\partial \mu_i} < 0$ hence lower investment, capital

Key mechanism:

- In the model: $\frac{\partial y_i}{\partial \mu_i} < 0$ hence lower investment, capital
- In the data: $\frac{\partial y_i}{\partial \mu_i} > 0 \Rightarrow$ high markup firms are expanding

Key mechanism:

• In the model:
$$\frac{\partial y_i}{\partial \mu_i} < 0$$
 hence lower investment, capital

• In the data: $\frac{\partial y_i}{\partial \mu_i} > 0 \Rightarrow$ high markup firms are expanding

$$I_{it}/Y_{it} = \phi_i + \psi_t + \beta \ln \mu_{it} + \varepsilon_{it}$$

$\ln \mu_{it}$	0.059*** (0.004)	0.032*** (0.006)	0.037*** (0.006)	0.035*** (0.006)
Fixed effects	No	Firm	Firm & Year	Firm & Ind-year
Observations	123,915	123,915	123,915	123,915
R-squared	0.015	0.002	0.022	0.052

Firm-clustered standard errors in parentheses. 1% winsorization. Compustat data.

Markups from replication of De Loecker, Eeckhout, Unger (2020)

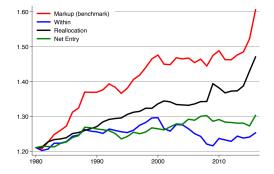
イロン イロン イヨン イヨン

Key mechanism:

• In the model:
$$\frac{\partial y_i}{\partial \mu_i} < 0$$
 hence lower investment, capital

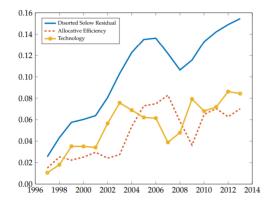
• In the data: $\frac{\partial y_i}{\partial \mu_i} > 0 \Rightarrow$ high markup firms are expanding

$$\Delta (I_{it}/Y_{it}) = \phi_i + \psi_t + \beta \Delta \ln \mu_{it} + \varepsilon_{it}$$


$\Delta \ln \mu_{it}$	-0.004*** (0.000)	-0.004*** (0.000)	-0.004* (0.002)	- 0.001 (0.002)
Fixed effects	No	Firm	Firm & Year	Firm & Ind-year
Observations	123,915	123,915	123,915	123,915
R-squared	0.015	0.002	0.022	0.052

Firm-clustered standard errors in parentheses. 1% winsorization. Compustat data.

Markups from replication of De Loecker, Eeckhout, Unger (2020)


イロン イロン イヨン イヨン

Reallocation

Markups for U.S. listed firms (Compustat data, estimates from De Loecker, Eeckhout, Unger 2020)

Reallocation

Productivity: Efficiency of Allocation versus Technology (estimates from Baqaee and Farhi 2020)

イロト イヨト イヨト イヨ

- Inequality versus representative agent
- Note: model versus data predictions on concentration
- Markups: diagnosis or symptom?

イロト イヨト イヨト イヨ

Predictions for concentration

Introduce simple form of heterogeneity: low a_l and high productivity a_h firms

イロト イヨト イヨト イヨ

Predictions for concentration

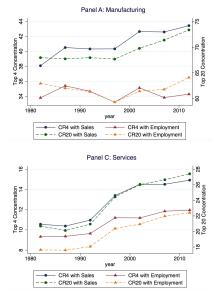
Introduce simple form of heterogeneity: low a_l and high productivity a_h firms

• Relative output of high productivity firms:

$$\frac{y_h}{y_l} = \left(\frac{a_h}{a_l}\right)^{\Lambda_t}$$

イロト イボト イヨト イヨ

Predictions for concentration


Introduce simple form of heterogeneity: low a_l and high productivity a_h firms

• Relative output of high productivity firms:

$$\frac{y_h}{y_l} = \left(\frac{a_h}{a_l}\right)^{\Lambda_t}$$

- Relative output productive firms increases in elasticity of substitution Λ_t
 - \Rightarrow negative correlation between markups and concentration

Concentration

Fraction of sales and employment by top 4 or 20 firms.

Source: Autor et al (2017) based on U.S. Census (D > () > ()

Kaldor and Piketty's Facts - Eggertsson et al.

Markups and concentration

$\mu_{s,t}^{-1}$	$\mu_{s,t}^{-1}$	$\mu_{s,t}^{-1}$	$\mu_{s,t}^{-1}$
73*** (0.23)	73*** (0.23)	-0.43*** (0.11)	-0.44*** (0.11)
Ν	Y	Ν	Y
Ν	Ν	Y	Y
504	504	504	504
	73*** (0.23) N N 504	73***73*** (0.23) (0.23) N Y N N 504 504	73***73*** -0.43*** (0.23) (0.23) (0.11) N Y N N N Y N N Y

Sector-level relationship between concentration and average markups.

French data for universe of firms 1994-2016. Source: Burstein et al (2020)

イロト イヨト イヨト イヨー

- Inequality versus representative agent
- Note: model versus data predictions on concentration
- Markups: diagnosis or symptom?

イロト イヨト イヨト イヨ

Two shocks: increase in markups and fall in interest rates

Two shocks: increase in markups and fall in interest rates

Could these be joint symptoms rather than a diagnosis?

• Recent literature: Jointly explains trends in market power, labor share, capital share, business dynamism, productivity growth

< □ > < 同 > < 回 > < 回 >

Two shocks: increase in markups and fall in interest rates

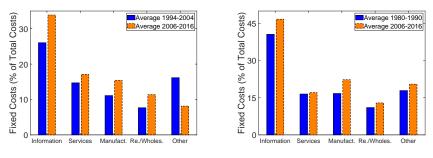
Could these be joint symptoms rather than a diagnosis?

- Recent literature: Jointly explains trends in market power, labor share, capital share, business dynamism, productivity growth
 - Software/intangibles: Aghion Bergeaud Boppart Klenow Li ('19); De Ridder
 - Anti-competitive behavior: Akcigit and Ates (2019)
 - Aging: Peters and Walsh (2019), Hopenhayn Neira and Singhania (2018)
 - Low interest rates: Liu Mian and Sufi (2019),

Market Power and Innovation in the Intangible Economy (2019):

• Shock is the rise of intangible inputs in production

< □ > < 同 > < 回 > < 回 >


Market Power and Innovation in the Intangible Economy (2019):

- Shock is the rise of intangible inputs in production
- Intangibles raise fixed costs, reduce marginal costs, raise firm heterogeneity

Market Power and Innovation in the Intangible Economy (2019):

- Shock is the rise of intangible inputs in production
- Intangibles raise fixed costs, reduce marginal costs, raise firm heterogeneity
- Intangible 'superstar' firms undercut competitors, raise markups, reduce innovation efforts by 'low-intangible' firms ⇒ productivity growth declines

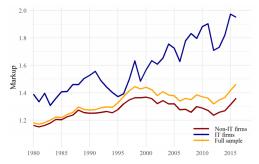
Fixed costs across sectors

(a) France

(b) United States

・ロト ・回 ト ・ ヨト ・

Sales-weighted average of fixed costs as a percentage of total costs


Fixed costs and markups

$$\mu_{it} = \alpha_i + \psi_t + \gamma \cdot \frac{f_{it}}{tc_{it}} + \beta' g(p_{it} \cdot y_{it}) + \varepsilon_{ijt},$$

Markups	United States (1980-2016)	France (1994-2016)	France (1994-2007)
	OLS	OLS	2SLS
Fixed-Cost Share	1.66***	1.28***	0.67***
	(0.031)	(0.002)	(0.224)
R ²	0.62	0.52	140,861
Observations	125,231	9,457,679	
Year fixed effects	\checkmark	✓	✓
Firm fixed effects	\checkmark	\checkmark	\checkmark
Size polynomial	\checkmark	\checkmark	\checkmark

Firm-clustered errors in brackets. Data: Compustat, FARE-FICUS merged with EAE. 2SLS IV: third-degree polynomial in the ratio of software to sales (F-stat 16.6).

Markups and technology

Trends in markups at high and low-IT U.S. listed firms.

Source: Van 't Klooster (2020) based on replication of De Loecker, Eeckhout, Unger (2020)

イロト イヨト イヨト イヨ

Fixed costs and sales growth

$$\Delta(p_{it} \cdot y_{it}) = \alpha_i + \psi_t + \gamma \cdot \frac{f_{it-1}}{tc_{it-1}} + \beta' g(p_{it-1} \cdot y_{it-1}) + \varepsilon_{ijt},$$

Sales Growth	United States (1980-2016)	France (1994-2016)
Lagged Fixed-Cost Share	.125***	.514***
	(.009)	(.002)
R^2	0.02	0.05
Observations	111,397	8,670,007
Year fixed effects	\checkmark	\checkmark
Firm fixed effects	\checkmark	\checkmark
Size polynomial	\checkmark	\checkmark

Firm-clustered standard errors in brackets. Data: Compustat, FARE-FICUS.

< □ > < □ > < □ > < □ > < □ >

Balanced Growth Path

	Δ Model	Δ Data
Growth and Innovation		
Productivity growth rate	-0.4 pp	-0.9 pp
Aggregate R&D over value added	41.9%	64.5%
Dynamism		
Entry rate (target)	-5.8 pp	-5.8 pp
Reallocation rate	-42.0%	-23%
Market Power		
Average Markup	21.8 pt	30 pt
Cost Structure		
Intangibles over value added (target)	1.5 pp	2.1 pp
Average fixed-cost Share	3.8 pp	10.6 pp

 Δ data: change in U.S. data for 2016 vs 1980.

イロト イロト イヨト イヨ

Market Power and Innovation in the Intangible Economy (2019):

- Shock is the rise of intangible inputs in production
- Intangibles raise fixed costs, reduce marginal costs, raise firm heterogeneity
- Intangible 'superstar' firms undercut competitors, raise markups, reduce innovation efforts by 'low-intangible' firms ⇒ productivity growth declines
- Productivity growth fell > 1 percentage point
 - Explains around half the real rate decline (log utility)

Market Power and Innovation in the Intangible Economy (2019):

- Shock is the rise of intangible inputs in production
- Intangibles raise fixed costs, reduce marginal costs, raise firm heterogeneity
- Intangible 'superstar' firms undercut competitors, raise markups, reduce innovation efforts by 'low-intangible' firms ⇒ productivity growth declines
- Productivity growth fell > 1 percentage point
 - Explains around half the real rate decline (log utility)

Note: this is **not** a measurement story \Rightarrow see Crouzet and Eberly (later!)

Summary

- Clear analysis of the **powerful** effect that rise of markups can have
- Diverse trends both qualitatively and quantitatively explained
 - Model explains puzzles, but maintains tractability
 - Combines real factors with asset pricing; model for Tobin's Q
- Representative agent approach
 - Model does not analyse effect of heterogeneity in markup trends
 - Are markups endogenous?

< □ > < 同 > < 回 > < 回 >