Competition, Firm Innovation, and Growth under Imperfect Technology Spillovers

Karam Jo & Seula Kim

Discussion by Maarten De Ridder
Summary
How does competition change the composition of innovation + growth?
How does competition change the composition of innovation + growth?

• Firms can expand their portfolio or improve their existing products
How does competition change the composition of innovation + growth?

- Firms can expand their portfolio or improve their existing products
- New friction: expanding portfolio requires time-intensive learning
How does competition change the composition of innovation + growth?

• Firms can expand their portfolio or improve their existing products

• New friction: expanding portfolio requires time-intensive learning

• Internal innovation is defensive as it prevents frontier learning
How does competition change the composition of innovation + growth?

- Firms can expand their portfolio or improve their existing products
- **New friction**: expanding portfolio requires time-intensive learning
- Internal innovation is **defensive** as it prevents frontier learning
- Threat of creative destruction? **Reallocate** external to internal innovation
How does competition change the composition of innovation + growth?

- Firms can expand their portfolio or improve their existing products
- **New friction**: expanding portfolio requires time-intensive learning
- Internal innovation is **defensive** as it prevents frontier learning
- Threat of creative destruction? **Reallocate** external to internal innovation
- But internal innovation is less productive: “ideas harder to find”
In any endogenous growth model, can write:

$$\text{Productivity growth} = \text{R&D spending} \times \text{R&D productivity}$$

In this paper:

- R&D productivity \approx mix of internal vs external R&D + chance of success
- External R&D has higher social rate of return if successful
- But internal R&D reduces the probability of success as firms build moot
In any endogenous growth model, can write:

\[
\text{Productivity growth} = \text{R&D spending} \times \text{R&D productivity}
\]

In this paper:

\textbf{R&D productivity} \approx \text{mix of internal vs external R&D} + \text{chance of success}

- External R&D has higher social rate of return if successful
- But internal R&D reduces the probability of success as firms build mool
Comments
Great paper + very exciting to discuss

- Main impression: intuitive mechanism to answer a first-order question
- Well written and very complete: model, micro evidence, quantification
- Elegant way to introduce defensive innovation in Akcigit & Kerr (2018)
Great paper + very exciting to discuss

- Main impression: intuitive mechanism to answer a first-order question
- Well written and very complete: model, micro evidence, quantification
- Elegant way to introduce defensive innovation in Akcigit & Kerr (2018)

Three comments:

1. Contribution: Add direct evidence for their mechanism?
2. Quantification: How effective is defensive innovation?
3. Mechanism: What’s the main driver of competition - growth link?
A lot of recent work explaining slowdown of productivity through “moots”:

- Akcigit and Ates (2023)
 - Market leaders increasingly engage in defensive patenting
 - Prevents knowledge diffusion by limiting access to technology

- Olmstead-Rumsey (2020, R&R Restud)
 - Probability of large innovations by laggards has fallen
 - Harder for smaller firms and laggards to become market leaders
A lot of recent work explaining slowdown of productivity through “moots”:

- Akcigit and Ates (2023)
 - Market leaders increasingly engage in defensive patenting
 - Prevents knowledge diffusion by limiting access to technology

- Olmstead-Rumsey (2020, R&R Restud)
 - Probability of large innovations by laggards has fallen
 - Harder for smaller firms and laggards to become market leaders

- De Ridder (2024)
 - Incumbents w/ high use of fixed-cost intangibles undercut entrants on price
Common thread: actions by incumbents reduce prob. of creative destruction

- “Competition, Firm Innovation, and Growth under Imp. Tech. Spillovers”

Current contribution of the paper:

- Authors offer additional micro foundation (internal innovation + learning)

Can the authors provide direct evidence of this?

- **Particular prediction:** internal innovation comes with lower CD risk
- Look at (e.g.) exit rates, changes in product portfolio, employment flows
How effective is defensive innovation? Answer: very → winner takes all

- Each product is produced by one firm due to Betrand competition
- A firm that escapes through defensive innovation faces no destruction
- Alternative: imperfect substitution as in Cavenaile, Celik and Xu (2023)
 - Output of different firms within a sector is imperfectly substitutable
 - Market share of firms is determined by relative quality
 - Internal innovation would not prevent entry, but make entrant smaller

- What is more likely to happen in practice?
Mechanism: what’s the main channel?

The paper: **direct negative relationship between concentration and growth**

- Firms of any size develop at most 1 new product, same FOC
- Hence it violates Gibrat’s law: firm size is independent of firm growth
- Usually a standard test for firm dynamics theories (Klette and Kortum)

In this paper, probability of improving a product does not depend on firm’s size

- Hence strongly negative relationship between firm size and growth

\[X_t = x_t \times N \quad \Leftrightarrow \quad X_t = x_t \times M_t \]

- Mass \(M_t \) of incumbents drives growth: concentration lowers growth
- Mechanically: strong negative effect of a technology that reduces entry
Conclusion
Conclusion

This paper:

- Higher creative destruction risk increases incentives for internal innovation
- International innovation has low social returns + externalities
- Hence complicated interaction between competition and growth

Review:

- Great paper: important question, intuitive modeling, very complete
- Could add direct evidence to distinguish itself from other papers
- Some modeling choices might make it capture an upper bound